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Narrow-sense stationary regimes are considered for multi-dimensional non-linear systems described by Ito 

stochastic differential equations with Wiener processes. The conditions for the existence of stationary and 

stationarizable one-dimensional distributions are derived. Exact expressions are obtained for stationary 

distributions in some mechanical systems. 

1. MANY problems of statistical dynamics of servo systems and systems with ideal stochastic 
holonomic and non-holonomic constraints acted upon by position conservative and non- 
conservative, accelerating and dissipative, gyroscopic forces and disturbances can be reduced to 
normal stochastic systems by augmenting the state vector [l-3]. A normal stochastic differential 
system (SDS) is a stochastic system whose state is described by an Ito stochastic differential 
equation with an appropriate initial condition 

Z’=a(Z,t)+b(Z,t)V, Z(t,)=Z, (1.1) 

tPrikl. Mat. Mekh. Vol. 55, No. 6, pp. 895-903, 1991. 
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Here Z E Rk is the state vector (in general, augmented), a = a(Z, t) and b = b(Z, t ) are. 
respectively k x 1 and k x I deterministic functions of the corresponding variables and V = V(t) is 

the I-dimensional vector of independent normal white noise with mean zero and 1 x 1 intensity matrix 
v = v(f), which is the time derivative of a Wiener process. The initial value Z. of the state vector at 
time to is a random variable independent of the values of the white noise V(t) for tb to. 

SDS (1.1) is called stationary if the intensity v of the white noise V (t) is constant and the functions 
a and b are time-independent a = a(Z), b = b(Z). In this case, SDS (1.1) takes the form 

Z’=a(Z)+b(Z)V, Z(t,)=Z, (1.2) 

SDS (1.1) is called stationarizable (reducible to stationary) if there exists a smooth invertible 
change of the state variables and the independent argument such that in the new variables the SDS 
has the form (1.2). 

Many authors have studied the problem of stationary regimes in multi-dimensional stationary non-linear 
SDS (see, e.g. [14] and the references there) and have derived exact expressions for one-dimensional 
distributions in many important practical cases. For linear SDS, exact expressions for the distributions are 
given in [l]. For multi-dimensional non-linear SDS, a number of approximate methods are available for 
determining stationary distributions (normal approximation method, method of moments, cumulant methods, 
orthogonal expansion methods, etc.), based on parametrization of the distributions (see, e.g. [l]). 

Let us consider the problem of finding exact expressions for one-dimensional narrow-sense 

stationary and stationarizable distributions in SDS (1.2) 
As we know (see, e.g. [l]), the one-dimensional densityf=f(z, t) of the stochastic process Z(t) 

in SDS (1.1) satisfies the Fokker-Planck-Kolmogorov (FPK) equation 

v -= 
at 

- -& [a (z, t) f] + f tr (& g [(I (z, t) 11) 9 u = bvbT (1.3) 

with appropriate initial condition and normalization condition. 

2. Proposition 1. The functionf = f(z, t) is the solution of the FPK equation (1.3) if and only if the 
vector field a(z, t) can be represented in the form a(z, t) = al (z, t) + a2(z, t) such that the functionf 
is the density of a finite invariant measure of the system of ordinary differential equations 

2’ = a, (z, t) 

i.e. it satisfies the condition 

and the component a2 = a2(z, t) is defined by the formula 

a, = [ad In f/i?z + (BTlc9zcfl/2 

The proof follows immediately from the FPK equation. Rewrite (1.3) in the form 

(2.1) 

(24 

(2.3) 

(2.4) 

Hence clearly f is the solution of (1.3) if and only if 

aflat + avaz (a,f) = 0 
where al = a - a2. 
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Remarks. 1. The system of ordinary differential equations (2.1) is called unperturbed. This definition enables 
us to interpret the original SDS (1.1) as the result of ~~urbation of system (2.1) by some dissipative 
components a2 and random terms bV. This leads to an analogy between SDS (1.1) and the smooth dynamic 
system described by Eqs (2.1). According to this analogy, the expectation of a known state function goes to the 
mean over a measure. The analogy may be useful for proving the non-existence of stationary distributions (see 
Sec. 4). 

2. The unperturbed system always exists, but it is of special interest only when a stationary distribution exists. 
For the stationa~ dist~bution the un~~urbed system is the autonomous system a1 = aI (zf, 

For the stationary SDS (1.2) the unperturbed system is described by the equation 

e’ = a1 (2) (2.5) 

Therefore by Proposition 1 a narrow-sense stationary solution exists if and only if the representation 
a(z) = a,(z) + a2(z) exists where the unperturbed system (2.5) has a finite invariant measure with densityffz). 
Thus, stationary regimes in the original SDS (1.2) exist if (and only if) it may be treated as a perturbation of the 
unperturbed system (2.5) with a finite invariant measure by some dissipative and stochastic disturbances. The 
determination of al(z) and a2(z) that satisfy the conditions of Proposition 1 is of course no less difficult than the 
solution of the FPK equation (1.3). However in applications (e.g. in problems of mechanics), the original 
vector field a(z) is often directly representable in the form a = a1 + a2, where the system (2.5) has an integral 
invariant (or even a whole family). This suggests a constructive approach to the search for one-dimensional 
stationary dist~butions. 

Proposition 2. Assume that in SDS (1.2) the vector field a(z) can be represented in the form 
a = al (z) + a2(z) and pT/dz(al II) = 0, where k(z) 20 is some scalar function. If 

(1) the inverse matrix u-‘(z) exists, 
(2) the vector field y(z) = a-‘(2a2 - p-l [dT} i~z(ap.+)]~} is irrotational, i.e. ~~~~~Zj = ~~i~a~~; i, 

j = 1, . . . , k, 
(3) F(z) = j.v”(z)dz is the first integral of system (2.9, 
(4) /“_m p(z) expF(z)dz = 1, 

then f(z) = p(z) exp F(z) is the one-dimensiona den&y of the stationary process Z(t) of SDS (1.2). 

proof. Represent f(z) in the form f = pfo and rewrite the FPK equation in the form 

dT/az (alpjo) + aT/dz;9 = 0, 8 = azlufo -_% [~Y~/dz (cq.&)]T 

We obtain the following expression: 

6 = t.6 {a2 - %P PTPz W)lT - V@ In ~~/~Z} = I/~~~~~ Er (2) - 8 In f~/~Zl 
We thus see that if the field y(z) is irrotational and 

Info = s vT (z)dz, then 8 = 0. 

Now 

aT/@z (a~~~~) = ~~~~/~z f+) + a,%V@z = ~~=~~~~z 

If f( is the first integral of system (2.9, then art?fJdz = 0 and aT/dz(alpfo) = 0. Therefore, 
dTl&(al kfo) = aTlad = 0. 

Remarks. 1. The density of the integral invariant p(z) and the first integral f*(z) are defined, apart from a 
constant muftip~ier. 
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2. If all the conditions of Proposition 2 are satisfied, system (2.5) has a whole family of invariant measures 
whose density equals the product of p by an arbitrary function of the first integrals. Clearly, f(z) is also the 
density of an invariant measure of system (2.5). 

3. Proposition 2 can be generalized to the case when 0 # 0 but 0 = const. 
Let us separately consider an important special case of SDS (1.2), 

s'=Q(wh P'=Php)+bWV PJ5) 
which often arises in the analysis of mechanical systems exposed to random disturbances. In (2.6), 

q=[q1,.. . , qnlTis the coordinate vector, p = Lp, , . . . , ~,~]~is the vector of momenta, Q and P are 
deterministic functions of the same dimension as the vectors q and p, respectively, and V(t) is the 
vector of normal stationary white noise. For this system, the matrix u in SDS (1.2) is singular. 

Let us restate Proposition 2 for this special case. 

Proposition 3. Assume that we have the representation of the vector P(p, q) 
= P,(q, p)+P*(q, p), and dr/dq(Q~)+dT/ap(PI~) = 0, p(q, p)>O. Then if 

(1) det a(p)+0 (a = bubT), 
(2) dyildpj = ayjlapi (i, j = 1, . . , m); $9, p) = 2a-‘(q)P*, 
(3) F(q, p) = 1 yT(q, p)dp is the first integral of the system q’ = Q, p’ = PI , 
(4) the function f(q, p) = p (q, p) exp F(q. p) satisfies the normalization condition, then f(q, p) is 

the one-dimensional density of the stationary process [q(t)‘p(t)T]T of the system (2.6). 
Note that if P2 = d@(q, p)/dp, then condition 2 implies that the commutator of the matrices a-’ 

and 4>,, = (a/ap)(aT/ap)@ vanishes. 
Proposition 1 can also be naturally extended to the system (2.6). 

Proposition 4. The function f(q, p) is the solution of Eq. (1.3) for SDS (2.6) if and only if the 
vector P(q, p) has the representation P = PI + P2 so that fis the density of a finite invariant measure 
of the system 

q’ = Q, p’ = P, (2.7) 

and the function P2 is defined by the formula 

P, = l/g (q) d 111 fidp (2.8) 

The problem of determining the one-dimensional stationary distributions in system (2.6) is thus 
restated as the problem of determining the density f of an invariant measure (if it exists) of a system 
of special form 

q’ = Q (sl P), P’ = P (q, P) - 9~ (q) 8 In f/b (2.9) 

Stochastic perturbation of a system of ordinary differential equations with a finite invariant 
measure has been considered in [4], where sufficient conditions have been obtained for the existence 
of narrow-sense stationary solutions whose one-dimensional density is simply identical with the 
density of the invariant measure of the unperturbed system. In fact, these conditions are also 

necessary. We will give these conditions below. 
Consider the SDS 

(2.10) 
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Assume that the scalar function N(z) is the density of a finite invariant measure of system 
z’ = a,(z), i.e. 

m 

&,N)=O, N>O, s Ndz=l 
-co 

Proposition 5. The function N(z) is a one-dimensional density of the stationary process of SDS 
(2.10) if and only if there exists a matrix function A(z) such that 

1) a,N = (cF/~zA)~, 2) A f AT = ah’ (2.11) 

Let us compare propositions 2, 3, and 5. In all these propositions, the required one-dimensional 
density is identical with the density of the invariant measure of the unperturbed system. However, 
propositions 2 and 3 are best used in cases when the first integrals of the unperturbed system are not 
known in advance and we only know the density of an invariant (not necessarily finite) measure. If 
for the unperturbed system we know both the density of the invariant measure and some (or all) first 
integrals, it is preferable to use Proposition 5. 

For example, consider the natural mechanical system q’ = Q(q, p), p’ = P(q, p) which has an invariant 
measure with density N(q) and a collection of first integrals Hi, . . . , H, that are quadratic or linear in p. If this 
system is situated in a random environment, the one-dimensional stationary density can be sought in the form 

f (q, P) = N (q) axp (--8H) (2.12) 

where 8 is a scalar parameter, and the function H can be identified with the sum of Chetayev integrals 

H = x h,H, $2 hj’Hj2 

Here hi, Ai’ are some constants, chosen so that the function H is a positive definite quadratic form of the 
momenta. 

Proposition 5 has been used to derive [4] the conditions for the existence of stationary modes in stochastic 
Chaplygin non-holonomic systems with stochastic instability of the constraints. 

An important practical case in mechanics is the case of stationary distributions for which the 
logarithm of the one-dimensional density is a quadratic form in some of the variables. 

Consider the Hamiltonian system with the Hamiltonian H = pTn(q)p/2 + II(q) acted upon by 
dissipative forces linear in the momenta and also by random forces 

q’ = aHlap, p’ = --Wq+Wq)p+b(q)V (2.13) 

Here V(t) is the vector of stationary normal white noise. 
Let us find the necessary and sufficient conditions for the existence of stationary distributions with 

one-dimensional density of the form f = c exp(-F), F = pTA(q)p/2 + h (1) is a positive-definite 
form of p. These distributions are normal with respect to the momenta p. 

By direct substitution into the FPK equation we can prove the following. 

Proposition 6. The function f(q, p) is the solution of the FPK equation if and only if the following 
conditions are satisfied: 

(1) {F, H} = 0, 2) AD + DTA + AaA = 0 

This proposition can be generalized to the case of SDS of the form 

q'=Qhph P'=P(q,p)+D(q)p+b(q)V 
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Here Q is a linear function and the function P is quadratic in the momenta p. Such systems describe 
for instance, stochastic Chaplygin non-holonomic systems [2]. 

Assume that the equations q’ = Q, p’ = P have an integral invariant with density p_(q) 3 0. 

Proposition 7. The function f = c exp (-F) is the solution of the FPK equation (1.3) if and only if 
the following conditions are satisfied: 

(1) F - In u is the first integral of the equations q’ = Q, p’ = P; 
(2) AD+DTA+AaA=O 

3. Consider the forced motion of a system of material points of mass m, (s = 1, 2, . . .) relative to 
some Cartesian coordinates. The position of the system is defined by the radii-vectors r, of its 
points. The constraints are restraining, holonomic, stationary, and ideal. Denote by q = [q, , . . , 
q,,lT the vector of generalized coordinates of the system. Assume that the system is in a 
homogeneous field of random forces with acceleration represented by a vector of independent 
normal white noise V of constant intensity v and also in a field of potential and dissipative forces 
with dissipation function Q, proportional to the square of the velocity of the centre of mass. 

Let us write the equations of motion in Hamiltonian form. The vector Q1 of generalized random 
forces is Q1 = b(q)V, b(q) = a/aq (Ah). Here M is the mass of the entire system and 

is the radius-vector of the centre of mass of the system. Indeed, 

Since 

@ = E (Mr’)YZ (e = const), 

the vector Q2 of generalized resistance forces is given by 

Qz= - Ea (q) q’, a(q) = bbT 

In fact 

Therefore, the stochastic equations of motion of the system have the form 

. 8H . 
q = ap, P = -z---&a(n)% +h(q)V (3.1) 

where H is the system Hamiltonian. 
We will now use Proposition 3. In this case PI = -dHlaq, P2 = Q2, p = 1, deta(q) 20 

(a = ybb’), and the vector field 

y (q, p) = - 26laaaH/ap = - 2wlaH/ap 

From condition 3 we obtain F = -2&u-‘H. 

(3.2) 
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Thus, if the function 

f (St P) = c exp f-2ev-w (q, p)l (3.3) 

satisfies the normalization condition, it is a one-dimensional density of a narrow-sense stationary 
solution. 

Note that the homogeneous field of random forces arises if the system is in a state of translational 
vibration with a white noise acceleration vector. 

Consider an n-link planar pendulum that moves in a homogeneous gravitational field and its suspension point 
vibrates with accelerations that are independent normal white noise. If the dissipative function is proportional 
to the square of the velocity (relative to the suspension point) of the centre of mass, then there exists a 
narrow-sense stationary solution whose one-dimensional density is given by the Gibbs formula (3.3). 

Note that the imposition of some new holonomic constraint on the system (3.1) does not affect the existence 
of a stationary distribution. The form of the function Hand of the matrices a and CT changes, but formulas (3.2) 
and (3.3) remain valid. 

A more more interesting question is the effect of Chaplygin non-holonomic constraints on the 
original system (3.1). Let q = [qrTq’lTIT and assume that the non-holonomic constraint equations 
have the form (A is some matrix) 

q- = A (q”) q@’ 

Then equations (3.1) should be replaced with 

R. aH* 
9 

= -v- ’ p”* = - t$- + IT (q”, p”) - &a* (q”) s + b* (q”) V (3.4) 

where H* (q”, p”) is the Hamiltonian and I? is the column vector of non-holonomic terms. Now 
P1 = -aHltiq”+ r. Computations show that y(q”, p’) is determined by expression (3.2) where H 
and p are replaced with H* and p”. However, the existence of a stationary regime in this case 
depends on the existence of an invariant measure of the system (3.4) for E = 0, V = 0. If it exists and 
its density is p (q”), then a stationary regime exists and its one-dimensional density is given by (3.3) 
with c replaced by p(q”). 

Thus, when Chaplygin non-holonomic constraints are imposed on system (3.1), the stationary 
regime persists if the resulting non-holonomic system (without dissipation and random disturb- 
ances) has an invariant measure. 

4. As we have noted above, the problem of finding the stationary distributions reduces to the 
problem of finding the densityfof an invariant measure of the unperturbed system. This is of course 
difficult because the right-hand side of the equations of the unperturbed system contains the 
unknown function f. However, the analogy may be useful when proving the non-existence of 
stationary distributions, because a necessary condition for the existence of stationary distributions is 
the existence of some invariant measure of the unperturbed system. 

Let us demonstrate this with an example of a smooth system (2.6) that corresponds to the 
unperturbed system (2.9). Assume that Eqs (2.9) have a singular point for any function f. Without 
loss of generality, we assume that this point is p = 0, q = 0. This is so if b(0) = 0, P(0, 0) = 0, and 
Q(0, 0) = 0. Then the relationship 

(4.1) 

will be the necessary condition for the existence of an invariant measure (and therefore of a 
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stationary distribution) with a smooth density for the system (2.9) in the neighbourhood of 
equilibrium [5]. 

As an example, consider the plane motion of a mathematical pendulum of unit length in a homogeneous 
gravitational field. We assume that the point of suspension vibrates vertically with random acceleration V, 
which is normal white noise of constant intensity. The pendulum is acted upon by a dissipative moment 
proportional to the angular velocity. The equations of motion have the form 

q’= 0, a’=.-gsincp-&A+ Vsincp 

where d>O is the coefficient of friction and g is the acceleration due to gravity. The necessary condition (4.1) is 
not satisfied in this case: 

Therefore, this system does not have a stationary distribution with a smooth one-dimensional density. Such a 
distribution may exist if, for instance, d = d(q) and d(0) = 0. Thus, singularity of the diffusion matrix at 
singular points of the equations of the system without random disturbances may be an obstacle to the existence 
of stationary distributions with a smooth one-dimensional density. 

5. In the dynamics of holonomic systems with random disturbances of the type of normal white 
noise, we can sometimes find a Gibbs stationary distribution with one-dimensional density of the 
form [l] 

f (q, p) = c exp i--W (q, p)l, c, 8 = const (5.1) 

where H is the Hamiltonian of some system. We will discuss two interesting properties of this 
distribution associated with the variation of stiffness and mass in the system. Consider (5.1) for the 
case when H is the Hamiltonian of a natural mechanical system with IZ degrees of freedom, i.e. 
H = pTCnp/2 + II(q), and fi is a constant matrix. In this case the expectation of p is zero (Mp = 0) 
and the normalizing constant c can be calculated explicitly. We thus obtain 

f (9, p) = I/3 exp (- eH) [ 1 ew (-en) dijml 
--oo 

(5.2) 

Let us compare two systems with different matrices ((2. We say that the system with !& has a 
greater mass than the system with a, if pTfitlp~pTIR2p (or equivalently q’T&q’ <q’TA2q’). We 
will first prove that the variances of the momenta Dpj (i = 1, . , n) increase as the system mass 
increases (first property). 

Indeed, we have 

Dpi = vs 1 pcexp(-fBprPp)dp= kii 
--m 

(5.3) 

where kii is the diagonal element of the matrix K = 0 -‘W’. Since the second system is stiffer, the 
ellipsoid pT&p = 5 = const is inside the ellipsoid pratp = 5, and any line drawn from the origin 
therefore intersects first the second ellipsoid and only then the first ellipsoid. Hence we obtain 

(5.4) 

Here the superscript is the system index. 
Note that if we additionally stipulate that II (-q) = II(q), i.e. the expectation of q is zero, then we 

canshowthatDqi(i=l,..., n) is not affected by changes in the system mass. 
Let us consider the second property. Let 
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H = pTQ (q) p/2 + q*BqP, 

where B is a constant matrix. We say that a system with potential energy matrix B2 is stiffer than the 
system with the matrix B1 if qTB1 q d qTB2q. We can similarly show that the variances Dqi diminish 
as the stiffness increases. 

6. Let us consider the non-stationary processes that can be reduced to stationary processes 
(“stationarizable” processes) [I, 61. We will give a rigorous formulation. A non-stationary 
distribution in SDS (1.1) is called reducible to a narrow-sense stationary distribution (stationariz- 
able) if there exists a smooth invertible change of the variables and the independent argument 

such that in the new variables Y the SDS takes the form 

Y’ =a*(Y) + b*(Y)V (6.2) 

and has a narrow-sense stationary distribution with the density F1 (y). Reducibility in this definition 
is in the narrow sense (see [l]). 

We can directly verify the following proposition. 

Proposition 8. SDS (1.1) has a stationarizable non-stationary distribution if and only if there exist 
matrix functions W(Z, t), a*(Y) (dima* = dimZ = k), b*(Y) (dimb* = dimb) and also a scalar 
function X(t) > 0 such that 

(3) the SDS Y’ = a* (Y) + b* (Y) V has a stationary distribution with the density f, (y). 
The required distribution has the form 

f (2, 4 = fl V (2, $1) ! m 1% wz I 

In condition 2, 
(6.3) 

The case when stationarization is by a linear transformation is particularly interesting. 

P~o~o~~t~o~ 9, SDS (1.1) has a stationa~zable non-stationa~ distribution if there exist matrix 
functions cx (t) (I (Y 1 #O), p(t), a*(Y), b*(Y) and also a scalar function X(t) > 0 such that 

(1) a*c%-‘Y - a’&@ + p’ + aa (a-’ (Y - p), t) = Aa* (Y), 

(2) ab (a-” (Y - @), t) = fib* (Y), 
(3) the SDS Y’ = a*(Y) + b* (Y) V has a stationary distribution with density fi (y). Then SDS 

(1.1) has a non-stationary distribution with density 

f (27 0 = f1 W + 6, 0 I a I (6.4) 

E~~mpfe. Consider the one-dimensional equation (1.1). Let a = a(Z-ct), b = b(Z-c?) (c = const). Then 
conditions 1 and 2 of Proposition 9 hold if we take a* = v(Y) - c, b* = b(Y), A = 1. The conditions when the 
one-dimensional equation (6.2) has a stationary distribution and the explicit form of the density are well known 
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(see, e.g. [l]). In these cases, the original equation has a non-stationary distribution with density f(z - ct) (a 
“soliton” distribution). Note that such systems arise in the dynamics of variable-mass stochastic systems. 

1. 

2. 
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4. 

5. 

6. 
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THE STABILITY OF A CLASS OF REVERSIBLE SYSTEMS=/- 

Translated by Z.L. 

A. L. KUNITSYN and M. V. MATVEYEV 

Moscow 

(Received 25 November 1990) 

The problem of the stability of the point of rest of an autonomous system of ordinary differential equations 

from a class of reversible systems [l] characterized by the critical case of m zero roots and n pairs of pure 

imaginary roots is considered. When there are no internal resonances [2, 31, the point of rest always has 

Birkhoff complete stability [2]. Internal resonances may lead to Lyapunov instability. The conditions of 

stability and instability of the model system when there are third-order resonances may be obtained from a 

criterion previously developed [4] for the case of pure imaginary roots. The results are used to analyse the 

stability of the translational-rotational motion of an active artificial satellite in a non-Keplerian circular 

orbit, including a geostationary satellite in any latitude (4, 51. The region of stability of relative equilibria 

and regular precession of the satellite is constructed assuming a central gravitational field and the resonance 

modes are analysed. 

1. CONSIDER the system of equations of perturbed motion 

x’ = DX + Q, (X); X E RN; Q, (0) = 0 (1.1) 
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